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We consider the r-algebra arising in the calculation of contributions from any aliow- 
able vertex part to the electromagnetic form factors. Simple algorithms are established 
which enable any form factor contribution to be written down as a function of Chebyshev 
polynomials whose argument is P = 2 - q2, where q is the photon 4-momentum. These 
algorithms are particularly suitable for use in computer programmes for evaluating 
‘ligh-order vertex parts in perturbation theory. 

1. I~~TR~~uCTION 

The size and speed of modern computers has made it possible to attempt to 
calculate sixth- and higher-order matrix elements defined by Feynman graphs i[l]* 
It is essential that the processes of calculation be made as systematic as possible, so 
that rules of procedure may be fed into the computer. The three principal steps in 
carrying out these calculations are 

(a) performing the momentum integrations, 

(b) doing the y-algebra, 

(c) evaluating multiple integrals over the Feynman parameters. 

A systematic procedure for performing the momentum integrations in any Feynman 
graphs was described in 1952 [2]; as a result, it is possible to formulate a set of 
rules for writing down any Feynman integrand as a function of the Feynman 
parameters, external momenta, and of y-matrices, given the topology of the graph. 
It is not necessary to use these rules in fourth-order calculations, which are fre- 
quently done using dispersion techniques. For higher-order calculations, the 
generality and orderliness of the method makes it very suitable for use with a 
computer. 

* Research sponsored in part by the European Office of Aerospace Research, United States 
Air Force, Grant No. EOOAR-69-0046. 
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2 CHISHOLM 

The problem of evaluating Feynman parameter integrals over many variables is 
difficult, but adaptive routines have been developed to deal with this problem [3]. 
There still remain the problems of achieving sufficient accuracy and of dealing 
with singularities. Improved integration techniques are being investigated by the 
author and his collaborators [4], and it is intended to apply these techniques to 
Feynman variable integrations. 

Techniques of y-algebra have been studied by a number of investigators, and 
these techniques are useful in all types of field theoretic calculations, including 
Feynman graph calculations. Various computer programmes have been written 
to enable y-algebra to be carried out automatically [5]; these programmes depend 
to some extent on algorithms which are incorporated in the programmes. Certain 
of these algorithms [6] deal with the problem of eliminating relativistic scalar 
products y,, *** yo (p = 0, 1, 2, 3) from matrix elements, a problem which arises 
quite generally. Other algorithms may be available for specific problems or classes 
of problem; in a previous paper [7], simple algorithms were established for the 
evaluation of contributions to the magnetic moment from any possible type of 
matrix element arising in any electromagnetic vertex part. Now that the evaluation 
of the sixth-order contribution to the electron moment is desirable and also within 
the bounds of possibility, these specialised algorithms are useful. It has proved 
possible, however, to generalise these algorithms to calculate contributions to the 
form factors for electromagnetic vertex parts in which the photon is off the mass 
shell. This paper establishes these algorithms, enabling all the y-algebra for any 
electromagnetic form factor to be performed almost instantaneously. 

1. As in the previous paper [7], referred to in future as I, we are studying 
the y-algebra arising from Feynman graphs of the type shown in Fig. 1; the external 

DIAGRAMS 

Figure 1 
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fermion line momenta are p1 and p2, and q = p2 - p1 is the photon line 
momentum. If p1 and pn are free fermion momenta, the complete vertex part is of 
the form [S] 

&#‘~~2) yfi + iG(q2) wrl~1~ UJI 

even if q2 # 0. The fermion mass is taken to be 

iv= 1, 04 

so that p1 and pz obey the free fermion equations 

ii@‘, - 1) = 0 (1.3a) 
and 

(#I - 1) % = 0, (1.3b) 

where p = ~JP. In calculations, terms containing plil and pzU arise symmetrically 
in the form 

for any q; we have used Eqs (1.3). Thus we have, as in 1, the first algorithm: 

Equations (1.3) imply 

p12 = pz = 1, 

but p1 * pz is not in general unity, as in I. We find 

P-2p,*p,=p,24-p22-q2 

= 2 - 42. (1.5) 

The algorithms derived for calculating form factor contributions will be derived 
in two steps. First, we shall derive formulae for matrix elements which contain 
strings of $fl and ,& terms in which these terms alternate. The four possible types of 
strings are 

E, = P,P,PIP~ **-P~Pz (1 ha) 
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More general elements, containing strings of ,& and A in any order, are reduced by 
reducing each string to one of the forms (1.6), using only the Klein-Gordon 
Eq. (1.4). We now establish an algorithm for reducing any string of Ir, and p2 to one 
of the forms (1.6), and identifying the number of & and p2 in the reduced string E. 

Consider, for example, a string 

which reduces to the form El by using (1.4) only; it must contain an even number 
of p, since El does. We have labelled the string A with alternating + and - signs, 
starting at the left with a + sign (we could, if we wished, start labelling at the 
right). Since A can be reduced to El , we are able to write A in the form 

where S, , S, ,..., S, are strings of even numbers of p which each reduce to the unit 
matrix 1 by using (1.4). In I, Eq. (3.7), it was shown that strings S which “reduce to 
unity” are identical with those in which 

number of ,$1 = number of & 
u-9 

number of ,& = number of & 

Let us define, for a string A, 

and 

cy = (number of $J - (number of &) (1.10) 

/3 = (number of $J - (number of &). (1.11) 

Then the rule (1.9) tells us that omitting the strings S, , S, ,..., S, from (1 .S) does 
not change 01 and /3. So El has the same values of 01 and p as (1.8). The same 
argument clearly also applies to strings A reducing to E, , E3 or Ed. 

For a string El , and hence for a string A reducing to it, 

CL=-p>o. 

The string El can be immediately identified by using (1.10) and (1.11) to give 01 and 
/3; we then know 

(i) the string El contains 01 terms & and 1 p j = OL terms & ; and 

(ii) that 01 > 0 corresponds to the fact that EL has $, at the extreme left. 
(If 01 = ,f? = 0, the string just reduces to 1. 
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We can carry out a similar analysis of strings reducing to & , ES and Ep . Rule 2 
below tells us how to identify any reduced string E, given OL and /L We note that in 
any string 

cu.+fi=Oorl, (3.12) 

so that either 

CX>O or P 3 0, (1.13) 

and 

CX<O or /3 < 0. (P.14) 

RULE 2. 

(i) In any string A containing any number of a and pz in any order, label the 
terms alternately with + and - signs, beginning at the left with a + sign. 

(ii) Calculate 01 and /3 for the string from (1.10) and (1.11). 

(iii) If p < 0 (se that OL 3 /3), the reduced alternating string E 

(a) contains 01 of ;I and / p j of pz , 
+ 

(b) begins with & on the left. 

If 01 < 0 (so that /3 2 a), the reduced alternating string E 

(a) contains /3 of i2 and j 011 of p1 , 

(b) begins with i2 on the left. 

It is clear that an alternative sign labelling, with the sign of the right-hand p 
would give an equivalent rule. 

2. MATRIX ELEMENTS NOT CONTATNING ycl 

As in I, elimination of the scalar products yp a** yp by known formulae [6] leads 
to vertex part matrix elements of three types: 
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In (M,), (M,), and (MS), fla p(a means that a product of several $$ and & may occur 
in any order; 17 Tr means that several traces of this type may occur. 

Factors pip and pBp in (MJ are dealt with by Rule 1. We consider next a factor 
of type 

iqp&, = i&fly . (2.1) 

Using (1.3) and (1.4), this can be reduced to the form 

z;, ES CZPlP2 “‘z%P2 UlT 

with 2k terms in the string, & and & alternating, and & on the left. 

(2.2) 

Now 

so that for k > 2, 

Also 

and 

PIP2 = 2Pl.PZ -P2#1 

= p -P2!zh 

2(k - 1) terms 

zl,m = u2v - P2Pd 

= P T&(P) - Z&,(P). 

&j(P) = i&u, 

Z;(P) = (P - 1) zg . 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Now the Chebyshev polynomials S,(P) and C,(P) obey the recurrence relation (2.4) 
and are of degree k in P. It is clear that Zb(P) is also of degree k, so Z;, is of the 
form 

Since 

and 

&l(P) = 1, Cm = 2, 

S,(P) = C,(P) = P, 
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we can fix A and B, using (2.6). This gives 

&(P) = [(l - 2P-3 S,(P) + P-T,(P)] zg . 

Using the relation 

(2.7) 

(2.7) reduces to 

4m = K&m - &-ml &I * (2.9 

We note that (2.9) holds for k = 1 and for k = 0, provided we define S-,(P) = 0. 
When q = 0, P = 2pl * pz = 2; then (2.9) gives 

40) = M2) - &-lc91 &?Ul 

which agrees with Rule 1 of I. 
We therefore have a formula (2.9) for any matrix element of form (2.2), defined 

by the integer k. Given any matrix element (2. l), we need only to be able to identify 
k, which is given by Rule 2. Any string A reduces to one of the forms E1 ,...? I& ) 
defined by LX and /3; so the element (2.1) reduces to one of the forms 

CA% (s = 1,2, 3,4). (2.10) 

Use of the Dirac equations (1.3) reduces each of these four forms to the form Zk e 
We need to identify k in terms of LX and p. Consider the four cases separately: 

O&u, (p < 0, CL = -p>. 

Dirac equation not used. Z;, contains LX of +& , 1 ,8 1 = a of & . 

k=a=jpj 

B,E,u, (p < 0, E = 1 - p>. 

Dirac equation (1.3b) used. Z;, contains (CL - 1) of iI , 1 p jofL . 

k=cc--1=/P\ 

i&E,u, (j3 > 0, a = 1 - /Cl). 

Dirac equation (1.3a) used. Z;, contains (fl - 1) of & , j 01 1 of gI . 

k=P-l=lal 
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J,E&~ (p > 0, a = -+). 

Both Dirac equations (1.3) used. 2;, contains (fl - 1) of gZ, 1 01 - 1 1 of & . 

k=B-l=jol-11. 

We can summarise these results in the form 

if /3<O,k=//3/ 

if /3>O,k=P--1 

Thus we have the algorithm for calculating elements of type (2.1): 

(2.11) 

RULE 3. 

(i) In any matrix element of the form 

ii2 c&au1 = i&Au1 , 

label the $j(a in A with signs as in Rule 1 and calculate j3. 

(ii) Define k by (2.11) in terms of /3. 

(iii) The matrix element then equals .&(P), given by (2.9) and (2.5), with 
P = 2 - 42. 

When q = 0 and hence P = 2, we should have Z;, = L’,, for all k. 
Since &(2) = j + 1, equation (2.9) gives this result correctly. 

3. TRACES 

The arguments of Section 2 are easily adapted to calculate traces that may occur 
after the elimination of scalar products yU a.. y”. These are of the form 

‘W~Pal (3.1) 

and 

‘WY, $G%l. (3.2) 

A trace of type (3.1) is zero if it contains an odd number ofp. Otherwise it can be 
reduced by using (1.4) to one of the forms 

TrL% A m h -* * @I ~~1 (3.3a) 
or 

Wi%A%%:z~ ---tf2td. 
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If we label the pI, in (3.1) alternately with + and - signs, starting at the left wit 
a + sign, and define cy and p as in Rule 1, there will be 

k=laI=ipj 

pairs ( ,J?$ ,&) or ( ,$Y~ &II> in (3.3). Define (3.3a), for example, as 

~0) = TrE A A A p2 ** - (k pairs) * .. P, ~~1. 

Then using (2.3) it follows that 

(3.5) 

~707 = P17,-l(P) - flk-2(P), 

as for Z#). Thus JI, is of the form 

17,(P) = -=xP) + YGQ). 

NowIT,, = Tr[l] = 4 

and nl(P> = ‘W&p21 

= Q Trlw” + Y~PI plv pzv 

= 4p, ‘pz = 2P. 

Putting these values into (3.6) when k = 0, 1, we find that X = 0 ana Y = 2. 
Hence 

Lfk(P) = 2&(P). (3.7) 

The algorithm for calculating (3.1) is thus: 

RULE 4. 

(i) Assume that the trace 

contains an even number of pa , since it is otherwise zero. 

(ii) Label the terms,@:, with + and - signs as in Rule 2, and find 01 or p. 

(iii) Define k = j cy 1 = / /3 j . Then the trace is equal to 2C,(P). 

When q = 0 and P = 2, (3.7) gives 

2C,(2) = 4, 

which is correct. 
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Traces of type (3.2), with an even number of &, , are zero. With an odd number 
of &, factors they reduce, using (1.4), to either 

or to 

in which there are (2k + 1) factors pi and ,& . We label the &, factors in X7,,&, in 
(3.2) with alternate signs, as in Rule 2, and define a and /!I satisfying 

a+p= 1. 

Then k, defining the number of factors in (3.8) is given by Rule 2 as 

k = MinII a I , I S Il. cw 
Now consider (3.8a) for example. Again using (2.3) 

(3.10) 

for k > 2, so that Ek is again a linear combination of S,(P) and C,(P). Remem- 
bering that pIu and p,, give the same contribution pu , say, by Rule 1, we find 

and 

El = ‘Wy, h A ~1 = Trb,V’ - A ~1) 811 
= 4Pp,, - 4pzu + 4(P - l)p, . 

These values for & and Z1 are the same as those for Z0 and Z; , given by (2.5) and 
(2.6), but with U,zk, replaced by 4p, . Thus for k > 2 

%ctp> + Fw) - &-ml 4Pu 3 (3.11) 

the analagous formula to (2.9). The factor pu has contributions given by Rule 1. It 
is clear that (3.9) and (3.11) apply equally to (3.8b). Also, if we define S-,(P) = 0, 
(3.11) applies for all k > 0. 

When q = 0 and P = 2, (3.11) reduces to 

Gc(2) -+ 4P, , 

which is correct. 
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The algorithm for evaluating (3.2) is thus: 

RULE 5. 

(i) Assume that the trace 

‘Wy, $J z%l 

contains an odd number of p,, , since it is otherwise zero. 

(ii) Label the terms in fib jfb with signs as in Rule I, and cakulate 01 and @ for 
the string. 

(iii) Define k = Min[j 01 1 , / p I]. Then the trace reduces to 

where the contribution of 4p, is given by Rule 1, and S-,(P) = 0. 

4. MATRIX ELEMENTS CONTAINING yp 

The algorithms of Sections 2 and 3 deaI with all traces and matrix elements that 
can occur, except for those of the form 

Qi, pay, pwl * 64.1) 

These are more complicated than previous types of term, since two strings of t 
form 17,~~ are involved. However, Rule 2 can be invoked to reduce each string to 
one of the forms El ,..., E4 , given by (1.6). Use of the Dirac equations (1.3) gives a 
further reduction to the form 

We shah first of all evaluate the element (4.2); later we shall use Rule 2 to define an 
and y1 from the matrix element (4.1). 

Consider an alternating string (of form EJ 
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Once again, it follows that Q, is of the form 

Putting Q, = 1 and Q1 = pI & fixes H and K, giving 

Qlc = 1W’) - PZ #G’df’). (4.5) 

All elements of the form (4.2) can be written in one of four ways, corresponding to 
the choices of m, n odd or even: 

Fl = ii,Q,y,Qlu, (m = 2k, n = 21), (4.6a) 

F2 = ii2Qkply,Qlul (m = 2k + 1, n = 20, (4.6b) 

F3 = i&,Qkyup9Qaul (m = 2% n = 21+ 11, (4.6~) 

F4 = iGQlcply,p2Qpl (m = 2k + 1, n = 21+ 1). (4.6d) 

Substituting (4.5) into Eqs. (4.6) and using (1.3) is equivalent to substituting 

Qk = l&c - P$&-, (4.7a) 

and 

Qz = 1% - PPL (4.7b) 

in (4.6). (The argument P of the Chebyshev functions is omitted.) All elements 
(4.6) then reduce to linear combinations of the following matrix elements: 

~ZPl;Y&l = ~2c7d4, - XL) Y7 (4.8a) 

~,YuPz% = %(2P,, - YLL) Y 3 (4.8b) 

~,hY,P2',ul = U2P( PlP + P2,> - (P + 1) Yul% . (4.8~) 

Remembering that pip and pBp give equal contributions (p,) by Rule 1, we use (4.7) 
and (4.8) to express the matrix parts of Fl ,..., F4 in terms of yG andp, as follows. 

(m = 2k, n = 21): 

4 = Cd&c - h%-1) Y,A& - P&-I> UI 3 

- &cS~Y, - mc-ls, + %c&-1)(2Pu - 7%) 

+ &-l&-lr4P&l - (P + 1) Yul- 
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The coefficients of yW and of pu are 

ycL : (Sk + &-I)(& + Sl-1) - (P + 2) SC-&-I , 

PLL : -2L%-I(& - SL-1) + Sd&c - &-,)I. 

(nz = 2k + 1, 72 = 21): 

6 = fW, - P$,-,)AY~(S, - A&-,) UI 3 

- &&(2P, - YJ - wz-,[4P, - P + 1) YMI 

- &-l&Y, + &-vL(2Pu - YJ- 

The coefficients of yP and ofp, are 

Yu . * -(S, + &,)(S, + Sl-1) + (P + 2) &Sl-, 3 

Pu : 2L%& - Sl-1) - Sl-16% - &-,)I* 

(nz = 2k, n = 21f 1): 

As with Fz , the coefficients of yN andp, contributing to F3 are 

Yu * - -(S, + &,)(S, + sz-1) + (P + 2) Sk-,& 7 

PI1 : x--Sk-,(& - Sl-1) + Sl(& - &c-J. 

(m = 2k + 1, n = 2k + 1): 

The coefficients of yu and of pu are 

yw : (Sk + Sk-,)@, + S&l) - (P + 2) s+‘s 2 

pu : Wk(S, - &-I) + &PI, - &+,)I. 

(4.9a) 

(4.5%) 

(4lOb) 

(4%) 

(4. KC) 

(4.9lq 

(4,lOd) 

If we denote “the integral part of X” by [xl, the sets of formulae (4.9) and (4.1 
have each a single expression in terms of m and ~1, defining the general element (4.2). 
In fact, we have 

F = WV) yw - ~W’)P,I ~1, (4.11) 
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wherep, obeys Rule 1 and 

- (P + 2)(SI:,,,-,,,S,,,,-,,,)I, 
and 

(4.13) 

The argument of each S in (4.12) and (4.13) is P. 
Since (4.5) holds for k > 0, (4.12), and (4.13) are valid for m > 2 and y1 > 2. 

However, (4.5) is true for k = 0 also provided that we define X,(P) = 0. With 
this understanding, (4.12) and (4.13) are valid for m 3 0 and yt > 0, taking 
[Q(m - l)] = -1 when m = 0. 

Formulae (4.1 l), (4.12), and (4.13) together with Rule 1, define immediately 
the form factors arising from any matrix element (4.2). Equation (4.11) can be 
written 

We can check formulae (4.12) by putting P = 2; (4.14) should then become 
Eqs. (3.2) and (3.3) of I. Since &(2) = j + 1, (4.13) gives 

W) = C-1)” (Mm - I>1 + 1) + C-1)” ([Hn - 01 + 1) 

= - g mnn, 

where g,, is defined in I. It is also easy to show that 

U(2) - 2V(2) = 1. 

Thus (4.14) reduces correctly to (3.2) and (3.3) of I when P = 2. 
It remains for us to identify m and n in an element of type (4.2) to which a general 

matrix element (4.1) reduces, using Rule 2. Let us consider the part 

y&b i?b% (4.15) 

of (4.1). We label the .& as in Rule 1, so that a + sign occurs immediately to the 
right of yU , and define 01 and p as in Rule 1. Then nb #jb reduces, without using (1.3), 
to one of the forms El ,..., Ed ; each case needs separate consideration, and we detail 
the identification of II for Ez , as an example: 
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(/3 < 0, 01 + p = 1). (4.15) reduces to 

Use of the Dirac equation has eliminated one $jl , so 

n = 2(CX - 1) = 2 / p / ; 

in (4.12) and (4.13) 

and 

[&Z] = 01 - 1 = j j3 1 

[g(n - l)] = a - 2 = ! p 1 - 1. 

The values of n and the associated integers p z [in] and u = [$(n - l)] can be 
expressed simply in terms of 01 or p in all four cases; these values are set out in 
Table I. 

TABLE I 

Values of n Associated with IT, ,&, 

Condition Reduced 
on 01, P string (1.6) It r&l = P [&I - l)> = 0 

The results of Table I can be expressed very simply, 

If p < 0, n = 2 / /3 [ 

If p>o,n=2/3-ll. 
(4.16) 

We can derive a similar rule for the product l7, p:a in (4.1) by labelling the p, 
alternately + and -, starting from the right with a + sign. 
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We then define 

y = (number of p’& - (number of p,), (4.17) 

6 = (number of p’,) - (number of &). (4.18) 

Then S plays the same role in I& pa as /3 does in l& & , and the analogue of (4.16) 
is 

IfS<O,m=2~6~ 
(4.19) 

IfS>O,m=26-1. 

Collecting together the results (1.1 l), (4.18), (4.16), (4.19), (4.12) and (4.13), and 
referring to Table I, we obtain the algorithm for evaluating (4.1): 

RULE 6. 

(i) In a matrix element of the form 

"2~PaYu~PlPi 9 

where each a or b takes the value 1 or 2, label the pa and the &, alternately with 
+ and - signs, starting in each case with a + sign on thep adjacent to yU . 

(ii) Define, for the string 17,~~ to the right of yM , 

/3 = (number of $,) - (number of &) 

and, for the string Lla pa to the left of yU , 

6 = (number of $,) - (number of p,). 

(iii) Define FZ, p and cr by 

~=2lpl9 P’IPI and cr= /p/-l when /3 < 0 

n=2/I-1 and p=u=p-1 when /3 > 0. 

Iikewise define m, p, and v by 

m=2161, p=j61 and v= /S/-l when 6 < 0 

m=26-1 and p=v=S-1 when 6 > 0. 
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(iv) Define 

17 

VP> = c- w+“I(u~) + s,-,(P))(S,(P) i- S,-,(P)) - (P i 2)(S”(P)S~(P))] 

where S,(P) is a Chebyshev polynomial of the first kind for k 3 0, and 

XI(P) = 0. 

(v) The matrix element is then given by (4.11) or (4.14). 

Rule 6 should reduce to Rule 5 of I when P = 2. Note first that the sign labelling 
in Rule 6 above is slightly different from that in Rule 5 of I: the signs in n,& in 
(4.1) have all been changed, while those in 17,~~ remain the same. Remembering 
this, Rule 5 of I states that the contribution to G(Q) is 

g m/n = -p - 6 (4.20) 

where p and 6 are defined in Rule 6. But (4.14) tells us that this should be equal 
to V(2), which we have checked to be given by 

w> = (-1)” [j&n + 111 + C-1)” Mfi + 111. (4.21) 

So expressions (4.20) and (4.21) should be equal. The relation between /3 and n is 
given by (4.16), and it follows that 

(-1)" [&@I + l)] = -p 

for all /3. Since 6 and m are similarly related, we have checked that g,, = V(2). 

5. CONCLUSION 

Rules 1, 3, 4, 5, and 6 provide simple algorithms for calculating the contribu- 
tions to the electromagnetic form factors from any allowable combination of ?/- 
matrices. The contributions are given in terms of Chebyshev polynomials with 
argument P = 2 - q2, where q is the photon cl-momentum. 

58r/8/1-2 
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